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NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS 

TECHNICAL NOTE No. 1736 

THEORETICAL METHOD FOR SOLUTION OF AERODYNAMIC FORCES ON TEEN 

WINGS IN NONUNIFORM SUPERSONIC STREAM WITH AN 

APPLICATION TO TAIL SURFACES 

By Harold Mirels 

SUMMARY 

A theoretical method for obtaining the aerodynamic forces acting 
on a thin wing in an irrotational nonuniform supersonic stream is 
presented. The method, "based on linearized theory, consists of a 
three-component superposition. The lift and the moments induced by 
the nonuniformity depend only on the wing plan-form boundary and on 
the vertical perturbation velocity of the free stream at each point 
of the plan-form area. Expressions are provided that permit lift 
and moment solutions for arbitrary plan forms and velocity distri- 
butions . 

The method is applied to determine lift and moments acting on a 
rectangular tail surface due to a spanwise parabolic distribution of 
upwash. Lift and moments due to a linear upwash distribution are 
also evaluated. 

INTRODUCTION 

The problem of determining the flow about bodies in supersonic 
flight is currently receiving considerable attention. Most of the 
solutions already obtained involve thin bodies in uniform free 
streams. In some cases, such as a tail surface behind a supersonic 
wing or a body in an imperfect supersonic tunnel, a nonuniform free 
stream exists and a somewhat different viewpoint from that for a 
uniform stream must be taken. If the velocity field is assumed 
irrotational and to consist of a uniform free stream plus small 
perturbation velocities, however, the linearized equation for the 
flow of a nonviscous compressible fluid is applicable and the 
method of solution follows from that for thin bodies in a uniform 
stream. 

The essentials involved in the linearized solution for a thin 
wing in a nonuniform supersonic stream are indicated herein. The 
solution is presented as a superposition of component potentials, 
each of which can be evaluated by the methods of references 1 to 9. 
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The contribution of each potential to the aerodynamic coefficients 
is shown. Several generalizations based on references 5 and 6, 
concerning the nature of the- upvash in the vicinity of a tail sur- 
face, are presented and a calculation is made of the lift and the 
moments acting on a rectangular tail surface due to parabolic and 
linear upvash distributions. The investigation was conducted at 
the HACA Cleveland laboratory and was completed during March 1948. 

SYMBOLS 

The following symbols are used: 

A    plan-form area 

b    span 

CD   drag coefficient,  ^ 

L 
CT    lift coefficient, =—s- L ¥?k 

C-.    rolling-moment coefficient, -—-— 
1 ipU2bA 

P 
CL,   pitching-moment coefficient, , « 
™ |pITcA 

„^ ,    J.    incremental pressure 
0«    local pressure coefficient,  j—^ 

c    chord 

D    drag 

d,e,f points of intersection of forward Mach lines with plan form 

edge 

L lift 

M free-stream Mach number 

p pitching moment about leading edge 

<1 source strength 
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rolling moment about midspan 

forward Mach cone area of Integration 

aspect-ratio parameter, rr 

uniform free-stream velocity, taken in positive i direction 

perturbation-velocity in x direction 

perturbation-velocity in y direction 

stream velocity in i direction 

stream velocity in y direction 

stream velocity in z direction 

perturbation velocity in z direction (upwash) 

upvash at midpoint of leading edge 

upwash at wing tip 

► Cartesian coordinate system 

angle of attack 

0 

cotangent of Mach angle, A/M^-1 

local slope of streamlines measured in planes of y » constant 

free-stream density 

local wing slope measured in planes of y = constant 

perturbation-velocity potential 

oV 
rate of change of upwash in r\   direction, -j— 

ow' 
t rate of change of upwash in I    direction, -g— 
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Subscripts: 

B    bot team surface of reference (z«0) plane r 

T    top surface of reference (z«0) plane g 

1    subdivision of forward Mach cone area 

Superscripts: 

'    associated with nonuniform free stream; wing assumed to be 
absent 

'*   associated with cancellation of free-stream vertical pertur- 
bation velocity over plan-form region of wing 

''*   associated with solution for wing in uniform free stream U 

ANALYSIS 

Superposition Principle for Thin Wings in 

Nonuniform Supersonic Flow * 

The assumption that an irrotational flow field consists of a 
uniform free-stream velocity U plus small perturbation velocities » 

dCP 
vx = U+u * Ü+37 

v7 = v = oy 

öqp vz » w - 31 

(1) 

permits the linearization of the partial differential equation 
describing the flow of a nonviscous compressible fluid. The result 
is the familiar Prandtl-Glauert equation 

Because of the linearity of equation (2), the superposition of 
individual solutions for cp yields additional solutions. Rela- 
tively simple perturbation fields can thus be superposed to create 
a complex flow field satisfying equation (2). 
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The boundary conditions for flow about a thin wing are generally 
specified in the z = 0 plane. This plane contains the wing at zero 
angle of attack with respect to U. The top and bottom surfaces of 
the z = 0 plane are independently considered and in each the flow 
is so defined as to be tangent to the corresponding wing surface and 
to conform in every manner with a physically possible situation. 
(See, for example, references 1 to 3.) Local streamline slopes 
measured in planes of y = constant can be expressed within the 
accuracy of the linearized theory as "h = w/ü. The vertical- 
perturbation-velocity distribution that will satisfy the tangent - 
flow condition is then w = aU. The manner by which the boundary 
conditions are satisfied suggests the following three-component 
superposition for obtaining the potential solution of a thin wing, 
at angle of attack, in a nonuniform supersonic stream: 

1. The perturbation-velocity potential <p' of the nonuniform 
stream when the wing is assumed to be absent 

2. The potential qp»' arising out of a cancellation of w», 
the vertical perturbation velocity of the nonuniform stream, 
at each point of the wing plan-form area, (that is, w1' = -w1 

for all points in the z = 0 plane within the wing-plan-form 
area) 

3. The potential cp»" representing the solution for the wing 
at the given angle of attack in a uniform free stream of 
magnitude U 

If the vertical perturbation velocities associated with each 
solution are considered, the three-component superposition is seen 
to provide for streamlines that are tangent to the wing. With the 
appropriate solution for each component potential, all required 
boundary conditions can be met. The superposition for the case of 
a tail surface is illustrated in figure 1. The shaded region S 
designates the area of integration when a source or doublet distri- 
bution (references 1 to 5) 1B used to evaluate the component poten- 
tials . 

Expressions for Drag, Lift, and Moment Coefficients 

The potential at points on the top and bottom surfaces of the 
z = 0 plane is 

cpT =cpT* +cpT" +cpT'" (3) 

cpB =cpB' +cpB" +cpB
,,, (3a) 
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and the linearized local pressure coefficients are then 

2 defy      _2 /aqy      öcßp" 
Cp,T - - if ~5x" =  U" \~35T + ~~3T~ 

2^  -2 (*V  *%"  *V" 
'P,B ü ~3x = u \~5x ^ 

(4) 

(4a) 

The wing drag coefficient is found from an integration of the 
effective drag force acting on each element of area. If Orp and 
Og represent the local wing slopes, the drag coefficient is 

CD - \jj      (Cp,B °B +  Cp,T aT) **& (5) 

9 o 

where the integration is conducted over the entire wing plan-form 
area A. The value of O    is positive when the surface normal, 
projecting into the stream, has a component in the negative x 
direction. 

The solution for lift coefficient depends on the difference in 
pressure coefficient for the top and bottom surfaces and can be 
expressed, within the accuracy of linearized theory, as 

c4 (°p,B " CP,T) ^^ (6) 

From equations (4) and (4a) 

(
C
P,B-°P,T) = -jj- 

/o%' 3y\ /SPB" ^T") o^"' SPT'" 
"5x~ "ox" 

(7) 
"X0   ' ay 

However,  v~ ■ must equal -r—   because in the absence of the wing 

no mechanism is present to generate or sustain the lift associated 

with a discontinuity in —r—. Equation (7) then reduces to 

(Cp,B -CP,T> - (Cp,B" -Cp,T") + «W -Cpy") 

and the expression for lift coefficient becomes 
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CL4/T(CP,B,^p,T,,)^ + i^f^P,•B,,,-Cpy,')^ 
JJk JJk (Q) 

Similarly, the coefficients for rolling and pitching moments about 

the midspan (y = - |) and leading edge (x = 0) are, respectively, 

°»-&//"(0P,B'' -Sy ')(/♦ !)*»♦ M/JA<CP,B''' -O,,T' '^t)«-* 

O) 

and 
c* - crrf^y'-sy')xdxd^+ £//"<

C
P,B

,,,
-°P,T

,,,
> -** 

JJ A JJ A (10) 

Methods of Solution for Superposition Components 

Nonuniform free stream, <P'. - When the nonuniformity of a super- 
sonic stream is due to a thin upstream "body, analytical determination 
of <P* may "be possible. For upstream bodies that are extremely thin 
in one dimension (lifting surfaces), the methods of references 1 to 6 
are applicable. Thin bodies of revolution require a solution of the 
type presented in references 7 and 8. When an analytical solution is 
tedious or impossible, the nonuniform flow field may be experimentally 
established. 

Uijwash cancellation, <P''. - The streamline slopes in the absence 
of the wing are 

AT " u 

»  -v 
VB " u 

where the sign convention for X is the same as that used for a 
in equation (5). The distribution to cancel these slopes over the 
wing plan-form area is then 
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'     T  = " U 

X "  w' 
B  " u" 

The cancellation can be conveniently accomplished "by means of a 
surface distribution of sources. As shown in reference 1, the only 
source capable of influencing the slope at a point on the z « 0 
plane is the local source, and the relation between local source 

strength and slope is given by q ■ -~ •  Thus, the source dis- 

tribution required to cancel the vertical perturbation velocity of 
the free stream is 

X_",r 
(ID 

and 

These sources are equivalent to a lifting surface and induce per- 
turbation velocities at all points within their influence. If wing 
pressure coefficients are desired, however, the entire qp *' flow 
field need not be defined. Expressions are given in references 3 
and 9 that relate the pressure coefficient 'at a point on a wing to 
the plan-form boundary and the source distribution over the plan- 
form area. They are directly applicable for wings having at least 
a part of the plan-form leading edge supersonic. (A plan-form edge 
is supersonic or subsonic as the component of the free-stream 
velocity normal to the edge is supersonic or subsonic, respectively.) 
The expressions fall into three classes, depending on the combination 
of plan-form edges influencing the point. Upon substitution of 
equation (11) the expressions presented in references 3 and 9 become, 
for points influenced by a supersonic leading edge, 

*T ft 
u 

« 

X   ' 
>   B 

it 
'u _ 

ft 

isa ±11 JMüÜ 
y(x-|)2-ß2(y-T!)2   JJsy'(x-e)2-ß2(y^)2 

(12) 

For points influenced by a supersonic and a subsonic leading edge, 
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v'dn 2_ ff       \3TJ 
H  dti 

^-tf-Pij-n)2   ™JJs firtWb-*)2 

ß M A. \&*'t      |      w'dn 

1 + ß (§§) Je ^U-l)Z-t2{j-r\)' 
(13) 

For points influenced by a supersonic and a subsonic leading edge 
and a subsonic trailing edge, 

C -" 

'ov d| dTi 

P,T  = *üJd J(x-e)2-ß2(y-T))2" ÄÜJJs ^/(x-u2-ß2(y-T,)2 

1
 (14) 

The coordinate system and the limits of integration are illustrated 

in figure 2. The term (|^J  is the slope of the plan-form edge 

evaluated at the point of intersection with the right forward Mach 
line from (x,y). Equation (14) assumes that the Eiitta condition 
applies at the trailing edge. Because the slope distribution is 
antisymmetric about the z = 0 plane, C

P,T" " " CP,B" ani the 

solution for only one surface is required. Superposition of half- 
infinite span wings, as in reference 6, may be used to find the 
pressure coefficient for points influenced by more than a single 
subsonic leading and trailing edge. 

When the body causing the disturbed flow field and the wing 
whose solution is desired are sufficiently close to permit mutual 
interactions, the complete solution associated with the cancella- 
tion potential cp" may require several superpositions. Three 
possible relations will be discussed In conjunction with figure 3. 
For convenience, the disturbing body is shown as a surface in the 
plane of the wing. In figure 3(a) the disturbing surface does 
not interact with the wing, and a single source distribution over 
the wing plan form, canceling the upwash induced by the upstream 
disturbance, is sufficient. In figure 3(b) both the cancellation 
of the upwash in the region of the wing and the free-stream 
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solution for the wing induce vertical perturbation velocities over the 
the disturbing surface region DS. In order to satisfy the boundary 
conditions for flow about the disturbing surface, a source distribu- 
tion canceling this upwash is required. These sources contribute an 
additional potential to all points within their influence (shaded 
area in fig. 3(b)). No part of the wing projects into this region 
and the wing is uninfluenced by the additional potentials. In fig- 
ure 3(c), however, this cancellation of upwash over region DS 
contributes to the potential at wing region W. Also, a source 
distribution is required to cancel the additional upwash at W. 
Thus, with interaction between the wing and a neighboring body, as 
in figure 3(c), the cancellation potential associated with the solu- 
tion for the wing is composed of several superpositions'. 

Uniform free-stream solution, q>" '. - References 1 to 4 may be 
used to determine Op'" . A large variety of methods and solutions 
are available and further discussion is unwarranted. 

Requirements For Lift and Moment Solutions 

Each lift and moment coefficient expressed in equations (8) to 
(10) consists of two members. The second member in each equation 
corresponds to the solution for the wing in a uniform free stream. 
The first member can therefore be considered as the correction for 
nonuniformity of the free stream. The magnitude of this correction 
can be evaluated with the aid of equations (12) to (14) . These 
equations depend only on the wing plan-form boundary and the local 
vertical perturbation velocity of the free stream w' at each point 
on the plan form. Thus, for those problems in which lift and moments 
are of primary interest, an explicit solution for cp' is unnecessary. 
Only a knowledge of w' at points on the wing is required. 

APPLICATIONS 

Lift and Moments on Tail Surfaces behind 

Supersonic Wings 

The determination of the lift and moments acting on a tail sur- 
face requires a knowledge of the upwash distribution behind super- 
sonic wings. Although the linearized solution for upwash is incom- 
plete, several useful generalizations can be made. Eeference 6 shows 
that: 
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1. The upwash distribution an infinite distance behind a ving 
depends on the spanwise load distribution. For a given load dis- 
tribution, the solution is identical for both subsonic and supersonic 
flight and its evaluation offers no essential difficulty. 

2. Infinite values for upwash are indicated along lines of con- 
stant y in the plane of the trailing vortex sheet wherever a dis- 
continuity exists in the rate of change of spanwise loading; otherwise 
the upwash is continuous. 

From an investigation of the upwash along the center line of the trail- 
ing vortex sheet behind a triangular wing, reference 5 shows that the 
upwash builds up asymmetrically to its value at infinity. The upwash 
achieves an almost constant value within 1 chord length of the trail- 
ing edge for triangular wings of small apex angle and within 2 to 
3 chord lengths for triangular wings whose apex angles approximately 
equal the Mach angle corresponding to the flight velocity. Although 
this result was derived for a special type of wing, the manner of 
derivation seems to indicate that the values of upwash, for points 
on or very near the trailing vortex sheet and a distance of several 
chord lengths behind the trailing edge, approximately equal the values 
an infinite distance downstream from these points. In reference 6 
the upwash behind several types of wing tip was found to follow a 
similar trend for points in the vicinity of the vortex sheet. 

On the basis of these indications, simplifying assumptions can be 
made concerning the nature of the upwash in the neighborhood of a .tail 
surface. If the tail surface is in the immediate vicinity of the 
trailing vortex sheet, the upwash in the tail-surface reference plane 
can be considered a function of span only and the distribution can be 
estimated from the solution for upwash an infinite distance downstream 

of the wing. Setting -w- =0 in equations (12) to (14) causes all 

the area integrations to disappear and thereby reduces the mathematical 
labor involved in determining lift and moment solutions. 

The effect of a spanwise parabolic upwash distribution on the 
lift and the moments acting on a tail surface of rectangular plan 
form is presented in the following section. This distribution appears 
to be a reasonable approximation for the flow in the vicinity of a 
tail surface. See, for example, the upwash an infinite distance behind 
a triangular wing as presented in reference 6. In order to illustrate 
the effect of a nonsymmetrical upwash distribution, the solution for 
upwash varying linearly in the x and y directions is also presented. 
Both distributions are defined in figure 4. 
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Rectangular plan form In parabolic upwash. - The solution for 
the effect of a symmetrical parabolic upwash on the lift and the 
moments acting upon a rectangular plan form is outlined in appen- 
dix A. The upwash distribution is expressed in the form 

»' = wn + 4 (| + ^j  K " wn 

O o 

) 

where wn is the value at T\  = - b/2 and wt is the value at the 
tip (t] = 0 or T) = -b). The lift and pitching-moment coefficients 
due to the upwash are shown to be 

CL 
11 4 

ß 

Wn /,  t\     K-Vn) (1     t .£mS_ J 
Ü" I1 " 2 1 +   Ü   \3  2 + 2   24 * / (15) 

and 

wm 
4 
ß 

Yn/l  t 
U \2 " 3 

K.-WJ n 
U 6 ~ 3 + 8   "6 (16) 

The aspect ratios for which these equations are applicable are 
restricted by 0£t£|, where t =-£-. 

As would be expected, the terms in equations (15) and (16) 
associated with WQ/U are equivalent to the solution for a flat 
plate at angle of attack a = vn/ü and the effect of a uniform 
upwash field on a tail surface is to increase the effective angle 
of attack. 

The terms associated with (wt-wn)/U represent the effect of the 
spanwise parabolic variation in upwash (fig. 5). Owing to the tip 
effect, the lift and moment coefficients decrease with increasing t. 

(infinite aspect ratio), the lift and moment coefficients For t = 0 
equal those obtained for a flat plate in uniform flow at angle of 

n  With increasing t the equivalent angle of attack a. = — 1 
wt 

3 U 
attack (for a flat plate of aspect ratio t to have the same lift 
and moments as those induced by the parabolic upwash) becomes a 
smaller fraction of (wt-wn)/ü and for t = l/2 is of the order 

a = 0.23 * n- 

Rectangular plan form in linear upwash field. - The expression 
for upwash varying linearly in both the | and r\    directions is 
given in appendix B as 
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where wn is the upwash at (0, - b/2), fy is the rate of change of 

upwash in the T\    direction Ul^  = ~gr),    and- ^£ is the rate of 

change in the | direction (fl| = -^-r-J. The solution for the lift 

and the moments induced on a rectangular plan form due to this upwash 
distribution is shown to be 

CL' 

Cl' 

4 
ß [*(> -1) U    12 

t 
" 6 

4 
ß, 

wn (l 
,TJ    \2 -!) U    \3 

_ t 

ß U \12 ~ 8 + 24 + 96 

(17) 

(18) 

for aspect ratios that satisfy 0£.t^i. 

Again the terms in equations (17) and (18) associated with wn 
are equivalent to the solution for a flat plate at angle of attack 

a = wn/ü. The presence of the term ü^ fk + TIJ in the upwash distri- 

bution results in a rolling moment. This moment is identical with 
that induced by steady roll about the midspan at the rate G^ radians 
per second because the local upwash defined by ^ is exactly equal to 
that used for the solution of a wing in steady roll. (See reference-9.) 
Similarly, the terms associated with fl| result in lift and pitching 
moments equal to those induced by steady pitching about the leading 
edge at the rate Öf radians per second. Thus solutions for a wing 
in steady roll and pitch can be utilized to evaluate readily the 
effect of linear upwash distributions. 

Corrections for Supersonic Tunnels 

If the local variations in Mach number and stream angularity 
in the test section of an imperfect supersonic tunnel are suffi- 
ciently small, the three-component superposition can be used in 
principle as a basis for reducing tunnel data to the values that 
would be obtained in a uniform free stream. The corrected value 
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for pressure coefficient at points on the top surface of a thin wing 
is obtained by subtracting (Cp T' + Cp^T") from the observed value. 

The term C_ T' is determined from a pressure survey and Cp^T" 

from equation (12), (13), or (14). g 

SUMMABY OF ANALYSIS 

The linearized solution for the aerodynamic forces acting on a 
thin wing in a nonuniform supersonic stream is presented as a three- 
component superposition. The effect of free-stream nonuniformity on 
the lift and moment forces depends only on the wing plan-form boundary 
and on the vertical perturbation velocity of the free stream at each 
point of the plan form. Expressions have been provided that permit 
the lift and moment solution for arbitrary plan forms and velocity 
distributions. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, July 30, 1948. 
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APPENDIX A 

RECTANGULAR PLAN FOEM IN PARABOLIC UPWASH 

Upwash distribution» - The parabolic upwash distribution is 
illustrated in figure 4(a): 

4 /b   \2 

w' = wn + ^2 (^2 + nJ  <wt-wn) 

Pressure coefficients. - The region influenced by the wing tip 
is designated region I and the remaining part of the half wing, 
region II (fig. 6). The aspect-ratio parameter is assumed to be in 

the range 0 S t =i — In order that no point on the wing be 

influenced by more than a single tip. 

Equation (14) (or equation (13) with hgj =0) is applicable 

for determining the local pressure coefficients in region I 
(fig. 6(a)): 

re 
p "   _   ~" 

J 

w'dq 

AM)2-ß2(y-n)2 

2_ 
rtU 

(If) d£dn 

j /\|(x-£)2-ß2(y-n)2 

JtU 

•-y -    T 4 /b       \2 

ß   LWn + b^V2 + 7   (vt"Wn) dl) 

/Jx2-ß2(y-n)2 

-2 
flß ^--frH^ 
+ 2 %-*-*) /\pFI) 

\hyf+m\OB^+1) 
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Equation (12) is applicable to region II (fig. 6(b)): 

 v'dn 
A6 

C    m
M  ■ — 

P,T rtU 

d 
^(x-if-fiY-rf 

p. r\ 
2 

JtU 

v^ <, s 

dtdrj 

Y(x-üV(y-n)5 

-2 
«u 

ß     wn + ^/|+ I)")2 (wt-wn) Idrj 

y-ß 
^XV^-T,)

2 

-2 
ß      U 

wn+4_   (wt-V 
U ,2+y      + ml 

The pressure coefficients are symmetric about the   y » -b/2 
plane and antisymmetric about the    z = 0   plane. 

Lift coefficient. - The lift coefficient is 

oc 

v - be 
dx 

Uo -b 
(-2°p,T")dr 

vn /       A      K-yn) (l m t      £ _   5.^1 
IT I1      2j + ~U      2+2       24 VJ 

Moment coefficient. - The pitching-moment coefficient about the 
leading edge is 

V'-SS 
xdx 

0       VJ -b 
(-2Cpy ) dy 

vn (\   t\  (wt-wn} A t . 3,2 t 
u" V2"3 r U e'^+s* "T, 
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APPENDIX B 

RECTANGULAR PLAN FORM IN LINEAR UPWASH 

Upwash distribution. - The linear upwash distribution is illus- 
trated in figure 4(b). 

w* =wn+"r,(l+1j)+n^ 
Pressure coefficients» - When (X t< jf, the local pressure 

coefficients in regions I and II are, for region I (fig. 6(a)), 

r^e 

C       "  m± 
p,T rtU 

w'drj 

V(*-£)V(y-i)2 

i~\ (if) ^ 
^(^Vcy-n)2 

-2 
«u 

n-y-ß *n - Qr,(| + n dTl 

U y-ß 
£       yXß2(y-rj)5 

,x+ßy 5=L 
o-y- ß 

dt 

<u 

Cl 1 dij 

ill 
y- ß 

Vu-üVcy-r,)2 

rv 
_2_ 
itU 

U 

^y+ ß 

x+ßy U 

Q|dTj 

,2    2, 
*± ^x-D^-ß^y-ri)' 

y-ß 

-2 
jtß > cos"# + 1) A[(| + y)cos-i(ä + i)-2y-y(y + f)_ 

3 u ^^V^^V-'H). 
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and, for region II (fig. 6(1))), 

9 
W'dTJ 

°p,T      ~ *U 

-2 
«U 

Py+ß 

yu-e)2-ß2(y-n)z 

wn + Q n (I + ^J dTi 

_2_ 
icU 

/-N (19 «* 
J 3Y(x-e)2-ß2(y-r,)2 

_2_ 
ox     py+ ß 

dt 
ßgdr) 

*=L     A/(x-|)2-ß2(y-n)2 

ß 

w n 
UU\2*y/+U 

Hie pressure coefficients are antisymmetric about the z = 0 

plane. The terms involving wn/u and ß|/u are symmetric and the 

term involving ß« /ü is antisymmetric about the plane y = - b/2. 

Lift coefficient. - The lift coefficient for this upvash is 

ßecA   t> 
°L  " ß IT f1 ~ 2 ) + U l2"6 

Moment coefficients. - The rolling-moment coefficient about 
midspan is 

Gl      -  B U 112  8 + 24 + 96 

and the pitching-moment coefficient about the leading edge is 

9m" = ß 
w. JL   1. 
U \2 U \3  8 
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(a) Potential <p» due to upstream wing; tail surface 
assumed absent» 

TJ 

(b) Potential <p'» due to cancellation of upwash over 
plan-form area of tail surface. 

U 

(c) Potential «p'»» due to solution for tail surface 
in uniform stream. 

Figure 1. - Solution for tail surface behind supersonic 
wing by means of three-component superposition. 
q> « <pt + <|>»i+<p»". 
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(a) Point In region influenced by supersonic 
leading edge. 

»T,TI 
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(b) Point in region influenced by supersonic 
and subsonic leading edges. 

(c) Point in region influenced by supersonic and subsonic 
leading edges and by subsonic trailing edge. 

Figure 2. - Regions of integration f^>r obtaining pressure 
coefficient at points influenced by various types of 
plan-form edge. 
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(a) Disturbing surface uninfluenced by wing. 

(b) Part of disturbing surface influenced by wing does not 
affect flow about wing. 

(c) Part of disturbing surface influenced by wing affects 
flow about wing. 

Figure 3. - Possible relations between wing and neighboring 
surface in reference to solution for wing. 
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w,=vA(£+T))2(wt-v 
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(a) Symmetrical parabolic upwash distribution. 

AW 

W* = *n+ATl(|+T)) + XX?5 

>y,"n 

(b) Linear upwash distribution. 

Figure 4. - General upwash distributions. 



24 NACA TN No. 1736 

CO. 

4» 

u 
& 

V 

O 

8 
o 
I 
+» 

.40 

L 

.30 

.20 

.10 

0 

(a) Lift-coefficient parameter. 
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c ) • 10 • 30 • 50 • 10 • 50 
Aspect-ratio parameter, t 

(b) Pitching-moment-coefficient parameter. 

Figure 5. - Lift and moments acting on rectangular^lan form due 

to parabolic variation in upwash. w« = g^- + TIJ (wt-
wn)» 
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(a) Point in region I. 
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(b) Point In region II. 

Figure 6. - Limits of integration for rectangular 

plan form.  0 < t < i.;  t ■ ° 
— — 2      bp 


